ارائه الگوریتم SLAM اینترنتی به دیدگاه و پیاده‌سازی آن در محیط شبیه‌سازی براساس اطلاعات پروراژی واقعی

سپاس به یکی از کارآمد برای پیه‌داد و

عکس عزیز، حمید نوری سولا، امین صادقی امامقلی و امیر ریخته گز گیاری

1کارشناس ارشد مهندسی پردازش تصاویر-گروه الگوریتم های ویژه، شرکت تحقیقاتی کارآمد
aazizi.tu@gmail.com
2کارشناس ارشد مهندسی پردازش تصاویر-دریافت این مقاله به آدرس
hamidnourisola@yahoo.com
3کارشناس ارشد مهندسی پردازش تصاویر-گروه الگوریتم های ویژه، شرکت تحقیقاتی کارآمد
aammiinn.sadeghi@gmail.com
4ویسدنده مسئول، استادیار مهندسی پردازش تصاویر-گروه الگوریتم های ویژه، شرکت تحقیقاتی کارآمد
agiasi@tabrizu.ac.ir

(تاریخ دریافت مقاله: 1392/11/05/2013 تاریخ پذیرش مقاله: 1393/01/27)

چکیده

واژه‌های کلیدی

سیستم ناویبر اینترنتی، مکان‌یابی و نقشه‌سازی همزمان، هوایی‌ها بدون سرنشین، فیلتر کالمن توسعه‌پایه.
Presentation of 3D and Efficient Inertial SLAM Algorithm for UAV and Its Implementation based on actual flight data in Simulation Environment

Askar Azizi¹, Hamid Nourisola², Amin Sadeghi-Emamgholi³ and Amir Rikhtehgar Ghiasi⁴

¹M.Sc. in Electrical Control Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran a.azizi.tu@gmail.com
² M.Sc. in Electrical Control Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Iran, hamidnourisola@yahoo.com
³ M.Sc. in Aerospace Engineering, Department of Electrical control Engineering, Faculty of Aerospace, Malek Ashtar University of Technology, Tehran, Iran, aammiinn.sadeghi@gmail.com
⁴ Corresponding Author, Assistant Prof., Faculty of electrical and computer engineering, university of Tabriz, Tabriz, Iran, agiasi@tabrizu.ac.ir

ABSTRACT

Simultaneous localization and mapping (SLAM) is an important problem in a manipulator navigation robot and solving this problem is one of the interesting topics for researchers. This problem shapes important part of the navigation and guidance. In this paper, one practical inertial SLAM algorithm is presented. Construction of the inertial SLAM is suitable for using two types of sensor Range / bearing and Bearing-only and do not need GPS or any prior knowledge of its position. This paper presents general system of UAV and improves the performance and accuracy of the 3D SLAM. In addition, this method solves two main problems that previous researches have not studied; first, all degrees of freedom (DOFs) for UAV is considered. On the other hand, UAV position changes are not limited in both X and Y axes and elevation changes are considered. Second, there is no limit in landmark positions. This means that the system can observe all of the landmarks with inertial sensor in every elevation. Finally, using the actual aircraft flight data, the accuracy of the algorithm has been proven by the results of the simulations.
SLAM: Simultaneous Localization and Mapping

1. UAVs: Unmanned Aerial Vehicle
2. SLAM: Simultaneous Localization and Mapping
3. EKF: Extended Kalman Filter
4. Indoor Robots
5.Outdoor Robots
6. Correlations
7. Re-Observe
8. INS: Inertial Navigation System
9. Dead-reckoning nature
در این مقاله کلیه روابط و همبستگی‌های الگوریتم SLAM اینترسی به بعد برای پایه‌سازی پیروی یک پیه‌پای بخش درجه آزادی استخراج و تحلیل شده و الگوریتم برای امکان پایه‌سازی در شرایط واقعی، ارائه شده است. در واقع این مقاله سیستم جامعی برای پیه‌پای برای بررسی علاوه بر افزایش کارایی و دقت الگوریتم، بروز مدل سطحی نیز که در تحقیقات قبلی توجه کمی به آنها شده است می‌باشد. اول اینکه کلیه درجات آزادی را پیشگیری در نظر گرفته و تعیین‌گری دقت روزنامه‌ای و روندهای شیمی‌سازی‌های صورت گرفته در پیش نشان‌دهنده را نشان می‌دهد.

تحقیق حاضر در هفته قسمت تدوینی شده است به‌طوری که بعد از مقدار دهی به بخش دوم به بیان الگوریتم اینترسی و روابط پایه‌ای مورد نیاز برای تولید کلیه و سیستم ترکیبی اینترسی پرداخته شده است. در قسمت سوم مدل پرداخته و مدل سیستم‌های ناشان‌دهنده SLAM و bearing only range bearing عوارض زمینی بیان شده است. در قسمت چهارم سیستم‌های وسیله‌ای ارائه شده است و به پیشنهادی بیان الگوریتم ارایه شده در این مقاله پرداخته است. نتایج حاصل از تجربه‌های الگوریتمی صورت گرفته در پیش نشان‌دهنده را نشان می‌دهد.

2- الگوریتم SLAM اینترسی

در این بخش الگوریتم SLAM اینترسی عرضه شده و عملکرد آن معرفی و تحلیل شده و عملکرد آن روی حالت MCL که شامل نمونه‌هایی از این الگوریتم به‌طور کلی به عنوان مدل‌های board on مطرح نمی‌شود. برای اطمینان در این حالت مدل مشاهده و فرق‌آمیزی که انتباه‌بان حالت مدل شده و سنسوریا به‌طور توصیف می‌کنند، پرسی می‌شود. به‌طور پیوسته به این نکته توجه کرد که عملیات نسبتی زمانی و مکانیابی بسته به مقیاس و ابعاد محیطی که مورد کاربرد قرار گرفته، متغیر بوده و دارای معادلات و شرایط مجزای این الگوریتم در حالت کلی دقیقاً مثابه به نیاز به نشان‌دهنده زمینی SLAM جهتی 1- ب- SLAM محلی، 2- SLAM محلی، 3- SLAM محلی، فقط نیاز این الگوریتم ناشان‌دهنده نسبت به در نظر گرفتن تویله شده مشخص شوند برای این حالت باستی موهمیت پیش‌بازی این الگوریتم نسبت به معادلات محلی عوارض زمینی معلوم باید. در ادامه ایندا معادلات SLAM محلی و نیز هر چاکه نیاز به تفکیک معادلات دو مقیاس نسبت به هم است، به‌طور SLAM جهانی ارائه می‌شود و بعد معادلات SLAM جهانی و پیش‌بازی این الگوریتم واقع است به آن اشاره شده است.

بردار حالت تخمین زده شده با (\(f_{\phi} \)) و (\(f_{\psi} \)) در گام زمانی \(k \) شامل موقعیت سی بی‌پهدای \(p^{b} \) و زاویای اولیه (\(\theta \))، سرعت پیش‌بازی \(\dot{v} \) \(\dot{p}^{b} \) نا محیطی به معادلات \(\Phi^{b} = [\phi \ \theta \ \psi]^{T} \) تا موقعیت سی (IMU) \(\Psi^{b} = [\phi \ \theta \ \psi]^{T} \) به نشان‌دهنده در محیط \(m_{\phi} \) (1)

\[
\Phi^{b}(k) = \begin{bmatrix} \dot{p} & \dot{v} & \dot{\phi} & \dot{\theta} & \dot{\psi} \\
\dot{m}_{\phi} & \dot{m}_{\theta} & \dot{m}_{\psi} & \dot{m}_{\phi} & \dot{m}_{\theta}
\end{bmatrix}
\]

به‌طوری که \(k = 1, 2, ..., N \)، البته این بردارهای دستگاه مشخصات به‌دست می‌آیند \(ECEF \)، با استفاده از \(3 = \text{IMU} \) به‌طور مجزا در خاک‌های دستگاه مشخصات اولیه \(\dot{p}_{\phi} \) \(\dot{p}_{\theta} \) \(\dot{p}_{\psi} \) اشتهار دارد. پارامترهای سیستم دستگاه مشخصات به‌طور تحقیقی مانند \(\dot{p}_{\phi} \) \(\dot{p}_{\theta} \) \(\dot{p}_{\psi} \) و \(\dot{p}_{\theta} \) \(\dot{p}_{\psi} \) دویان \(C^{b} \) به‌طور مجزا در دستگاه مشخصات اولیه محیط نیاز به تفکیک دارد، اولیه رابطه رابطه مجزا دستگاه مشخصات مرجع و بردارهای بیکه در الگوریتم SLAM اینترسی استفاده می‌شوند، تشريح شده است.

1- Local SLAM
2- Global SLAM
3- IMU: Inertial Measurement Unit
4- ECEF: Earth-Centered, Earth-Fixed
5- Local-Level Navigation Frame

نشریه سامانه‌های غیرخطی در هندسه برنی، دوره 3، شماره 1، تابستان 1394
1394

Downloaded from jnsee.sut.ac.ir at 10:15 IRDT on Thursday July 25th 2019
SLAM

\[\dot{x}_{\text{global}}(t) = F_{\text{global}}[\dot{x}_{\text{global}}(t), u(t)] + G_{\text{global}}[N(t)] \]
مشخصات بدنی به طوری که می‌تواند برآورد مکان معلوم دستگاه مختصات ناوبری محلی از طریق رابطه زیر محاسبه

$$C^w_b = C^n_b C^n_w$$

بردارهای $$\hat{f}^b$$ و $$\hat{W}^b_{ib}$$ به ترتیب مقدار بردار ویژه نیروی شتاب سنج و مقدار سرعت زاویه‌ای زیروسکوب هستند (به طوری که $$w_{gyro}$$ و $$w_{accel}$$ به ترتیب خروجی‌های شتابسنج و زیروسکوب هستند و $$\delta W^b_{ib}$$ و $$\delta f^b$$ به ترتیب مقادیر نویز شتابسنج و زیروسکوب هستند که:

$$w(t) = [w_{accel}(t), w_{gyro}(t)]^T$$

سرعت‌های زاویه‌ای واقعی $$W^b_{ib}$$ به صورت زیر تعیین می‌شوند:

$$f^b = \hat{f}^b - \delta f^b - w_{accel}$$

$$W^b_{ib} = \hat{W}^b_{ib} - \delta W^b_{ib} - w_{gyro}$$

کم و زیاد شدن جزئی خروجی‌های زیروسکوب‌ها و شتابسنج‌ها به دلیل تغییرات دمایی و انحراف خروجی، به‌ویژه در های IMU هنوز، اتفاق می‌افتد. با توجه به اینکه معمولاً اینان این کم و زیاد شدن‌ها در مقایسه با خروجی‌های سنجشی‌های بزرگ و نسبتاً ثابت، کوچک است خروجی‌های شتابسنج و زیروسکوب‌ها ثابت فرض می‌شوند. مدل‌های این خروجی‌های شتابسنج‌ها و زیروسکوب‌ها از طریق روابط زیر حاصل می‌شوند:

$$\delta \hat{f}^b = 0$$

$$\delta \hat{W}^b_{ib} = 0$$

سیستم موقتی‌های نشانه‌های نقشه در دستگاه مختصات ECEF تخمین زده می‌شوند و همچنین به عنوان حالتی از عوارض زمینی ساکن و حرکتی، ثابت فرض می‌شوند و مدل فرآیند $$\tilde{I}^b_{ib}$$ به صورت زیر ارائه می‌شود:

$$\dot{m}^i_{\gamma} = 0$$

معادلات (31) (5) (6) (10) و (12) می‌تواند به صورت گکسته در زمان و به شکل یک مرحله انگرال گیری اویلری برخی مربوطه اول نیز برای شوند:

$$\hat{x}_{global}(k) = F_{global} [\hat{x}_{global}(k-1), u(k), k] + G_{global} [N(k)]$$

به طوری که $$F_{global}$$ و $$G_{global}$$ این انتقال حالت تابع انتقال حالات گیروکستی و به ترتیب مدل $$G_{global} = [..k, k]$$ تابع انتقال مدل ورودی در زمان $$k$$ است، بنابراین مدل $$G_{global}$$ فرآیند به صورت زیر بدست می‌آید:

$$p^e(k) = p^e(k-1) + v^e \Delta t$$

$$v^e(k) = v^e(k-1) + [C^w_b \hat{f}^b - C^n_b \hat{W}^b_{ib} - 2(w_{le} \times v^e) + g^e] \Delta t$$

$$\Psi^e(k) = \Psi^e(k-1) + [E^n_b (\hat{W}^b_{ib} - \delta W^b_{ib} - w_{gyro} - C^n_b w^e)] \Delta t$$

$$\delta \hat{f}^b(k) = \delta \hat{f}^b(k-1)$$

$$\delta \hat{W}^b_{ib}(k) = \delta \hat{W}^b_{ib}(k-1)$$

$$m^i_{\gamma}(k) = m^i_{\gamma}(k-1)$$
که اختلاف زمانی بین بخش‌های k و $k-1$ است.

در اینجا معادلات بالا در مقياس SLAM محیط ارائه می‌شود. که در آن با انتخاب دستگاه مختصات ناوبری محلی به عنوان یک دستگاه مختصات ایرانی مرجع و با صرف نظر کرون اثر کورولینوس و سرعت زاویه‌ای که توسط چرخش کره زمین ایجاد می‌شود، معادلات ناوبری ایرانی به حالت‌های مدل فرا آینده پیش‌بینی می‌شوند. معادلات مدل فرا آینده به پیش‌بینی مدل زمانی در زیر آورده شده‌اند:

\[
\dot{p}^n = v^n \tag{20}
\]

\[
\dot{v}^n = C^b_n \dot{f}^b - C^b_n \delta f^b - C^b_n w_{accel} + g^n \tag{21}
\]

\[
\Psi^n = E^n_b (\hat{w}^b_{ib} - \delta w^b_{ib} - w_{gyro}) \tag{22}
\]

\[g = 9.81 m/s^2 \]

\[v_{n}^{\text{gyro}} = [0, 0, g]^T \]

به طوری که با توجه به جاذبه‌گرانشی در دستگاه مختصات ناوبری محلی، است. بنابراین نشان‌هایی عوارض زمینی در دستگاه مختصات ناوبری محلی ارجاع داده می‌شوند و مدل فرا آیند آنها به‌صورت زیر است:

\[
m^n_i = 0 \tag{32}
\]

بنابراین شکل کامل معادلات مدل فرا آیند گسته در زمان در SLAM محیط به‌صورت زیر هستند:

\[
p^n(k) = p^n(k-1) + v^n \Delta t \tag{44}
\]

\[
v^n(k) = v^n(k-1) + [C^b_n \dot{f}^b - C^b_n \delta f^b - C^b_n w_{accel} + g^n] \Delta t \tag{45}
\]

\[
\Psi^n(k) = \Psi^n(k-1) + [E^n_b (\hat{w}^b_{ib} - \delta w^b_{ib} - w_{gyro})] \Delta t \tag{46}
\]

\[
\delta f^b(k) = \delta f^b(k-1) \tag{57}
\]

\[
\delta w^b_{ib}(k) = \delta w^b_{ib}(k-1) \tag{48}
\]

\[
m^n_i(k) = m^n_i(k-1) \tag{49}
\]

3- مدل مشاهده و مدل سنسورهای نشان‌های زمینی

معادلات مدل مشاهده، ارتباط بین مشاهده‌های سنسر‌های پیک نشان‌هایی که در دستگاه مختصات سنسور زمینی برای حالت‌های تخمین‌زده SLAM محیط مشاهده می‌شوند. را توصیف می‌کند. (30) و (31) به‌ترتیب، به مشاهده‌ی $z_j(k)$ حالت‌های تخمین‌زده شده محیط مربوط می‌شوند.

\[
z_j(k) = H_{i,\text{global}} \left(p^n(k), \Psi^n(k), m^n_i(k), k \right) + v(k) \tag{30}
\]

\[
z_j(k) = H_{i,\text{local}} \left(p^n(k), \Psi^n(k), m^n_i(k), k \right) + v(k) \tag{31}
\]

به طوری که $v(k)$ توابعی از آن‌ها می‌باشد. $H_{i,\text{local}}(k)$ و $H_{i,\text{global}}(k)$ نویز $v(k)$ نتیجه‌ی نتایج

1- Centripetal
2- Coriolis effect
SLAM است. مشاهدات زمینی می‌توانند از انواع سنسورهای مختلف مانند ردار، کد دوربین برخی با فاصله‌ای بالا یا بالای آند. SLAM تا نشانه‌های زمینی داده‌های پارامترهای برداری نشانه‌های زمینی ادامه بپذیرد. در شرایط داشت اهداف برگزی که نمی‌توانند به عنوان یک نطقه در داده‌های سنسور در نظر گرفته شوند، مرکز جرم هدف پیدا می‌شود. برای تایید این وظیفه هندسه‌ای سنسوری می‌تواند به دو شکل تشکیل داده شود: مشاهدات range bearing و ب: مشاهدات bearing only.

مشاهدات حاصل می‌شوند مدل مشاهده به‌صورت زیر خواهد بود:

\[
z_j(k) = \begin{bmatrix} \rho_j \\ \phi_j \\ \psi_j \end{bmatrix} = \begin{bmatrix} \sqrt{(x_j')^2 + (y_j')^2 + (z_j')^2} \\ \tan^{-1}\left(\frac{y_j'}{x_j'}\right) \\ \tan^{-1}\left(\frac{z_j'}{(x_j')^2 + (y_j')^2}\right) \end{bmatrix}
\] \hspace{1cm} (32)

\[
z_{i,\text{ang}}(k) = \begin{bmatrix} \Phi_i \\ \psi_i \end{bmatrix} = \begin{bmatrix} \tan^{-1}\left(\frac{y_i'}{x_i'}\right) \\ \tan^{-1}\left(\frac{z_i'}{(x_i')^2 + (y_i')^2}\right) \end{bmatrix}
\] \hspace{1cm} (33)

به طوریکه کوواریانس نویز ویژه SLAM به‌طوری می‌تواند از این هندسه افتاده کرده: به یک مشاهده داده شود:

\[
R_{\text{ang}} = \begin{bmatrix} \rho_{\text{ang}} \\ \phi_{\text{ang}} \\ \psi_{\text{ang}} \end{bmatrix}
\]

به طوریکه کوواریانس نویز زاویه‌ای است. برای دوربین برخی مشاهده به‌صورت مطلوب‌تری به شکل پیکسل‌های در تصویر دوربین نمایش داده می‌شود:

\[
z_{i,\text{pix}}(k) = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f_u \left(\frac{y_i'}{x_i'} + u_0\right) \\ f_v \left(\frac{z_i'}{x_i'} + v_0\right) \end{bmatrix}
\] \hspace{1cm} (34)

\[
z_{i,\text{pix}} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f_u \left(u - u_0\right) \\ f_v \left(v - v_0\right) \end{bmatrix}
\] \hspace{1cm} (35)

\[
\begin{bmatrix} \Phi_i \\ \psi_i \end{bmatrix} = \begin{bmatrix} \tan^{-1}\left(u - u_0\right) \\ \tan^{-1}\left(v - v_0\right) \end{bmatrix}
\] \hspace{1cm} (35)

dاده شده است: elevation and azimuth به رابطه (35) با رابطه (35) جایی که پارامترهای کالیبراسیون برای دوربین هستند و کوواریانس نویز پیکسل است. ارتباط میان مختصات پیکسل و زاویه‌های

\[
\begin{bmatrix} \Phi_i \\ \psi_i \end{bmatrix} = \begin{bmatrix} \tan^{-1}\left(u - u_0\right) \\ \tan^{-1}\left(v - v_0\right) \end{bmatrix}
\] \hspace{1cm} (35)
محاسبه محدودیت‌های گام‌های زمانی:

\[
\dot{x}^{g}_{\text{global}}(k+1) = \nabla F_{\text{global}}(p(k)) \nabla F_{\text{global}}^{T}(p(k)) + \nabla G_{\text{global}}(p(k)) \nabla G_{\text{global}}^{T}(p(k))
\]

(37)

که در آن \(F_{\text{global}} \) و \(G_{\text{global}} \) نسبت به پردازش کلی به دست آمده و نسبت به پردازش زمانی، \(F_{\text{global}}(k+1) \) دارای محدودیت‌های زمانی کلی به دست آمده

\[
\dot{x}^{g}_{\text{global}}(k+1) = \nabla F_{\text{global}}(p(k)) \nabla F_{\text{global}}^{T}(p(k)) + \nabla G_{\text{global}}(p(k)) \nabla G_{\text{global}}^{T}(p(k))
\]

(37)

که در آن \(F_{\text{global}} \) و \(G_{\text{global}} \) نسبت به پردازش کلی به دست آمده و نسبت به پردازش زمانی، \(F_{\text{global}}(k+1) \) دارای محدودیت‌های زمانی کلی به دست آمده
شکل 2: مرور اجمالی بر الگوریتم SLAM ایبرسی

SLAM در محلی، بردار حالات تخمین زده شده یعنی \(\hat{x}_{local}(k+1) \) با استفاده از روابط (24) تا (29) به صورت روبه‌روی جلو پیشرفت می‌شود.

\[
p^{-}(k+1) = \nabla F_{local} p(k) \nabla F_{local}^T + \nabla G_{local} Q(k) \nabla G_{local}^T
\]

(38)

جایی که \(p^{-}(k+1) \) مدل ورودی نویز \(w(k+1) \) نسبت به بردار حالات \(F_{local}(...) \) و تأثیر \(\hat{x}_{local}(k+1) \) می‌باشد.

\(F_{local}(...) \) یا یک مقدمه‌ای مشاهده‌ای از یک نشانه‌ای خاص به‌دست می‌آید، موتیفیات آن نشانه‌ای با استفاده از تابع مقداردهی اولیندی range/ bearing به‌طوری که برای اولین مقداردهی range/ bearing SLAM محلی، محاسبه می‌گردد:

\[
J_{1,\text{global}} \left[\hat{x}_{global}(k), J_{1} \left(z_{i}(k) \right) \right] \rightarrow m_{i} = p^{\ast} + C_{n}^{n} p_{gb}^{n} + C_{n}^{n} p_{sb}^{n} \]

(39)

\[
J_{1,\text{local}} \left[\hat{x}_{local}(k), J_{1} \left(z_{i}(k) \right) \right] \rightarrow m_{i} = p^{\ast} + C_{b}^{b} p_{gb}^{b} + C_{b}^{b} p_{sb}^{b} \]

(40)

به‌طوری که برای سال زیر است:\n
\[
J_{2} \left(z_{i}(k) \right) \rightarrow p_{ms,i}^{\ast} = \begin{bmatrix} \rho_{i} \cos(\phi) \cos(\theta) \\ \rho_{i} \sin(\phi) \cos(\theta) \\ \rho_{i} \sin(\theta) \end{bmatrix}
\]

(41)

سپس بردار حالات و ماتریس کوواریانس حالات با اضافه شدن موقعیت نشانه‌ی جدید تکمیل می‌شوند:

\[
\hat{x}_{global,\text{aug}}(k) = \begin{bmatrix} \hat{x}_{global}(k) \\ m_{i}^{\ast}(k) \end{bmatrix}
\]

(42)

\[
p_{global,\text{aug}}(k) = \begin{bmatrix} I & 0 \\ \nabla J_{x} & \nabla J_{z} \end{bmatrix} \begin{bmatrix} p_{global}(k) & 0 \\ 0 & R_{z} \end{bmatrix} \begin{bmatrix} I & 0 \\ \nabla J_{x} & \nabla J_{z} \end{bmatrix}^T
\]

(43)
روابط (41) و (42) برای SLAM جهانی بوده و برای SLAM محلی این معادلات به صورت زیر هستند:

\[
\hat{x}_{\text{local}}(k) = \begin{bmatrix} \hat{x}_{\text{local}}(k) \\ m_s(k) \end{bmatrix}
\]

\[
P_{\text{local}}(k) = \begin{bmatrix} I & 0 \\ \nabla J_x & \nabla J_z \end{bmatrix} \begin{bmatrix} P_{\text{local}}(k) & 0 \\ 0 & R_s \end{bmatrix} \begin{bmatrix} I & 0 \\ \nabla J_x & \nabla J_z \end{bmatrix}^T
\]

به طوری که \(\nabla J_x \) و \(\nabla J_z \) هستند.

4-1- وابسته‌سازی داده

وابسته‌سازی داده، فراهم‌آمده تطبیق مشاهدات صورت گرفته توسط سنسورهای زمینی از نشان‌های مربوط به موقعیت‌های سه بعدی تخمین زده شده

\[(\gamma)\] Mahalanobis

در فضای سنسور ارزیابی می‌شود:

\[
\gamma_i = v_i^T(k)S_i^{-1}(k)v_i(k)
\]

به طوری که \(S_i(k) \) و \(v_i(k) \) تاواوری و کوارینانس توآوری برای یک مشاهده از نشانه آم در نقطه در بخش زمانی \(k \) هستند. همگام بازی کردن وابسته‌سازی یک مشاهده داده شده به نشانه‌های مقداردهی اولیه شده در نقطه \(\gamma_i \) باعث می‌گردد این هزینه مقداردهی اولیه شده محاسبه شود. تطبیق‌هایی که در تنها یک آستانه‌ای تعیین شده از مجموع با یک آستانه‌ای تعیین شده از اطمنان قرار می‌گیرند، قابل قبول در نظر گرفته می‌شوند. که در این صورت مشاهده به یک نشانه مشخص شده در نقطه وابسته‌سازی می‌شود و یک گام بهرس رسانی حالت EKF اجرا می‌شود. اگر مشاهده در داخل آستانه‌ای یک نشانه موجود در نقطه قرار نگیرد این گونه فرض می‌شود که نشانه قبلی دیده شده نشده است و در نتیجه داده مشاهده‌ای برای مقداردهی اولیه نشانه درون نقطه اسکلتی می‌شود.

همگامی که مشاهدات نشانه‌ها به‌خوبی در مختصات سنسور نسبت به ابعاد محلی جهت گیری و موقعیت و سیله، قرار داده می‌شوند، این روش وابسته‌سازی داده به‌خوبی کار می‌کند. در شرایطی که نشانه‌ها خیلی متراکم هستند، نه تنها ممکن است در نظر گرفتن مطالعه‌های نشان‌های منحصر به فرد با مشاهدات سنسورهای منحصر به فرد استفاده کاربردی می‌باشد بلکه امکان دارد در نظر گرفتن سازگاری مشترک جدید نشانه با

چندین مشاهده به‌طور همزمان نیز لازم باشد تا ابهامات وابسته‌سازی غلبه شود.

4-2- به‌روز رسانی بردار حالت

پس از این که یک نشانه در بردار حالت مقداردهی اولیه شده، مشاهدات بعدی صورت گرفته از این نشانه برای به‌روز رسانی هم‌عصر بردار حالت که شامل موقعیت و سرعت به‌بیان خروجی سنسورهای ایرانی و موقعیت نشانه مذکور و سایر نشانه‌های محیط می‌شود، اسکلت می‌گردد. تخمین حالت در مرحله به‌روز رسانی EKF به‌روز می‌شود. به‌طوری که تخمین حالت و ماتریس کوارینانس حالت اسکلت می‌گردد:

\[
\hat{x}_{\text{global}}(k+1) = \hat{x}_{\text{global}}(k+1) + N(k+1)v(k+1)
\]

\[
\hat{P}_{\text{global}}(k+1) = \hat{P}_{\text{global}}(k+1) - N(k+1)S_i(k+1)N(k+1)^T
\]

\[
v_i(k+1) = z_i - H_i\hat{x}_{\text{global}}(k+1)
\]

1- Innovation
اکنون مسیر ارسال شده در این مقاله و پیاده‌سازی شده در شبیه‌سازی SLAM

۵- الگوریتم SLAM اینرسی ارسال شده برای اجرای شایع است از سنسورهای bearing only و range/bearing

گرایش انجام شده در زیر به تفصیل بررسی شده است.

در اولین گام و با دقت نظر گرفتن مقادیر اولیه، حالت بعدی به ردار حالت و ماتریس کوارتینس پیشینی می‌شود. این جایی است که تخمین زده مقدار باید به گرایش ذوب درمان

دیده اوایل شتاب و زیرگروه‌ها در شدت است. اگر این شتاب قابل ملاحظه است، در آن مکان مقارنی سیستم به وابسته‌سازی داده‌ها می‌پردازد. این باید تشخیص داده شود

در مرحله بعد که سنسور زمینی مشاهده‌های را ارائه می‌دهد، سیستم به وابسته‌سازی داده‌ها می‌پردازد.

که این شتاب قابل ملاحظه شده است یا نه؟

در آنگرویه ارسال شده باید جهانی جدید باشد در آن مکان تقریبی آن در مختصات به دید شده در مختصات مرجع.

(جهانی با محلی) محاسبه شده و به تشخیص اجرای شده، اضافه می‌شود.

اعتراضی داده شود که ماهیت مشاهده می‌باشد، قابل رویت شده است. در آن مکان سیستم به وابسته گرایش دارد و نشانه‌ها می‌کند.

در دلیل این که مایه‌ها تخمین زده شده برای آن نشانه می‌کند. این قابل شناخت ماهیت در اولین حلقه، الگوریتم بردار حالت و ماتریس کوارتینس را بررسی می‌کند. این بر اساس مشاهده سیستم

در این حلقه گرایش ماتریس کوارتینس و بردار حالت متناظر از موقتین، سرعت از اولیه و مقادیر شتاب و جریان شتاب زده شده برقرار می‌شود. در این حلقه نمونه و از روابط ارائه شده، بررسی سیستم می‌گردد.

الگوریتم دوباره به مرحله اول بازگشت و این حلقه را تا پایان مدیریت کردار می‌شود (در شبیه‌سازی 100 ثانیه بروز، این حلقه 1000 دور تکرار می‌شود و در نظر گرفته شده است).

در شکل 3 شبیه‌سازی از این الگوریتم آورده شده است.

۶- نتایج شبیه‌سازی‌ها

SLAM، با یک یک سری پیش‌نگاه از جمله‌ای شرایط اولیه، موقعیت واقعی نشانه‌ها مشخص شود.

۶-۱- آنالیز گرایش مقداری شتاب و چرخش و شرایط اولیه

همانطور که بالا آمده شاهد در الگوریتم SLAM اینرسی برای مورد مقادیر لحظه‌ای شتاب و چرخش بدن به عبره در دیگر حوزه‌ها

و همچنین با استفاده از این مقادیر به کمک شتاب سنج و زیرگروه‌ها به صورت آنلاین گرفته می‌شود. IMU واحد

و مورد نیاز است که می‌تواند مقدار به کمک شتاب سنج و زیرگروه‌ها به صورت آنلاین گرفته می‌شود (\[\begin{bmatrix} \phi(t) \\ \theta(t) \end{bmatrix} \]) به مشاهده شبیه‌سازی، یک پایگاه داده از این مقادیر برای مسر برقراری حدود 100 ثانیه به ثبات و در هر لحظه با

\[
S_i(k+1) = \nabla H_{i,\text{global}} \hat{P}_{i,\text{global}}^-(k+1) + \nabla H_{i,\text{global}} + R(k+1)
\]

\[
N_i(k+1) = \hat{P}_{i,\text{global}}(k+1) \nabla H_{i,\text{global}}^T S_i^-(k+1)
\]
مراحل به این پایگاه داده‌های عملی که مشابه با اندازه‌گیری در دنبال واقعی است، می‌توان به خروجی‌های شتاب‌سنج‌ها و زیروسکوپ‌ها مراجعه کرد.

اگر آنکه الگوریتم به‌خوبی قادر به تخمین مکان بهداشت باشد، اطلاعات از محل اولویت به‌پایان، تأثیر

پیش بینی حالت پیش‌بینی از نوعی از شرایط اولیه به‌پایان می‌تواند باشند. حالت و متروسی کوشش شاخه به کار می‌کند. در واقع GPS

علاقه به شیب‌سازی الگوریتم اینستیتیو دهدهای از داده‌های GPS انتقال داده‌های الگوریتم به شرایط اولیه

GPS انتقال داده‌های الگوریتم به شرایط اولیه

GPS

تولید مقدار اولیه را به دست آورده GPS

از جمله خاج می‌شود. هرچند که می‌توانستند شرایط اولیه را به شکل دستی وارد کنند یا برای آن که می‌توانست کامل با واقعیت تلایش باشد و امکان پیش‌بینی عملی معیاری باشد، این قابلیت به الگوریتم اضافه شد. در اجرای برنامه این امکان فراهم شده است که نقاط

نشانده باشد. شکل دلخواه و با انتخاب‌های متقابلی تعریف شود. به این کار مقدار واقعی نقاط نشانده با نقشه اضافه می‌شود (شکل 4) و همگان‌طور که مشاهده می‌شود مقدارت‌ها را می‌توان به دلخواه در راستای محورهای X و Y و نیز با تغییر مکان دایره قرص رنگ در راستای

2 انتخاب کرد.
شکل ۲-۴: تعریف موقعیت واقعی نشانه‌ها با ارتفاع های متغیر، به طوری که ابتدا با تغییر موقعیت دایره فرم‌برند. در نوار‌های سمت راست شکل، ارتفاع موقعیت نشانه‌ها را مشخص می‌کنیم و بعد از اضافه کردن دایره سیاه در صفحه سمت چپ شکل موقعیت \(X \) و \(Y \) نقطه مورد نظر را مشخص می‌کنیم.

نتایج

در این بخش ترسیم نقشه‌های انجام گرفته برای مکان‌های تخمین زده شده‌های نشانه‌ها و تخمین مسیر حركت (شامل حركة انتقالی و چرخش) بهبود به همراه تخمین سرعت‌های آن نشان داده شده است که در هم‌های آن موارد تخمین زده شده با مقدار بزرگ‌تر مطابقه شده‌اند. به دلیل شکل تقریباً سیستم شبیه‌سازی شده مشخص گردیده در شرایط رفت‌آیند، نشانه‌ها به کمک مسیر بهبود مشاهده می‌شوند (مکان‌های تخمین زده شده برای نشانه‌ها). منسوری که برای این سیستم در نظر گرفته می‌شود که در صورت یک فاصله محدد با محدودیت ۳۰۰ متر تعریف شده است. بنابراین منسور به بانده‌های سوار است. تا شناخت کردن این کرده‌ها به اندازه‌ی ۳۰۰ متر قادر به دریافت اطلاعات از مکان نسبت نقاط نشانه‌ها می‌باشد. شکل ۵ نشان می‌دهد. در این شکل این نشانه‌ها به نسبت زده شده در این موقعیت زده شده می‌شوند. هم‌مانند در این شکل موقعیت واقعی نشانه‌ها و موقعیت تخمین زده شده آنها نیز نشان داده شده است.

شکل ۵: نمای سه بعدی از نمود ترسیمی توسط الگوریتم SLAM اینترسی.
شکل ۶ نمای دو بعدی از محدوده میکان نشانه‌های تخمین زده شده و همچنین مسیر حركت تخمین زده شده به‌هاد توسعه الگوریتم.

در شکل ۶ محدوده موقعیت نشانه‌های تخمین‌شده شده و همچنین مسیر حركت تخمین‌زده شده به‌هاد توسعه الگوریتم ایرانی نشان داده شده است. در اینجا به عنوان SLAM فراهم می‌آورد. در این نمای دو بعدی نشان داده می‌شود. خط قرمز نگرفته‌بودن حركت تخمین‌زده شده را نشان می‌دهد. نقطه سیاه رنگ نشانه‌های حقیقی تعیین شده می‌باشد و شکل‌های بیضی مانند، در واقع محدوده‌های را نشان می‌دهند که توسعه الگوریتم به‌عنوان نشانه‌های مشاهده شده‌اند که این محدوده‌ها توسط ماتریس کورواریانس برای هر نقطه نشانه تعیین شده‌اند.

در حقیقت این شکل توصیفی بر مبنای مدل همبستگی رابطه‌ای تأسیسی است که هم‌مان نامیده می‌شود. در این کار از آن به‌عنوان الگوریتم ایرانی یاد می‌شود. این شکل به‌عوامل کارایی اندازه‌گیری الگوریتم طراحی شده را به‌عنوان می‌رساند. علاوه بر این که الگوریتم SLAM به‌درستی می‌تواند به‌عنوان زده شده‌اند، در زمینه نشانه‌های حقیقی تعیین وجود عقلانی و عقلانی عمل نموده است و کلیه‌ی نشانه‌هایی که در محدوده‌های عملاً سفارش قرار داشته‌اند را به‌خوبی تشخیص داده است.

در منحنی‌های شکل ۷ برای هر مشخصه صندلی عملاً دمای الگوریتم طراحی شده برای تغییر موقعیت بهبود می‌کند. می‌توان تعیین موقعیت بهبود می‌کند. می‌توان تعیین موقعیت بهبود داده شده است. این ادعا سرعت با رابطه زیر محاسبه می‌شود:

$$v_{mag} = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

در شکل ۱۱ هم زیادی اولیه واقعی و تخمین زده شده مقدار سطح مشاهده شده باید تقریباً بر قدرت بالای الگوریتم می‌باشد.
شکل 7 مقایسه مکان واقعی پهپاد با مکان تخمین زده شده توسط الگوریتم برای حرکت در راستاهای شرق، شمال و راستای پایین.

شکل 8 منحنی های خطا‌های بین موقعیت واقعی پهپاد و موقعیت تخمین زده شده توسط الگوریتم.
شکل ۹: مقایسه اندازه‌برداری سرعت واقعی به‌راه‌ی مقدار تخمین زده شده توسط الگوریتم.

شکل ۱۰: مقایسه سرعت‌های واقعی به‌راه‌ی مقدار تخمین زده شده توسط الگوریتم در راستاهای شرق، شمال و راستای پایین.

نشریه‌سازی‌های غیرخطی در مهندسی برق، دوره ۳، شماره ۱، تابستان ۱۳۹۴
نتیجه‌گیری

در این مقاله کلیه روش‌ها و معادلات پایه برای پیاده‌سازی این سیستم SLAM ایرانی می‌شود. پیاده‌سازی این سیستم بر روی یک پهپاد، بسیار توسط و توانسته شده شد. معادلات بندایی که سیستم‌های ایرانی و توپولوژی‌های ایرانی را در نظر می‌گیرند، تجزیه و تحلیل شده‌اند و به پیاده‌سازی برای زمانی که مکان‌بندی و نفوذپذیری در یک چهارچوب جهانی از دستگاه مختصات مرجع یا در یک چهارچوب محیط اختیاری از دستگاه SLAM ایرانی شده است. این سیستم SLAM مختصات جغرافیایی را با دقت تحلیل شده‌اند. کلیه این معادلات و روش‌ها به شرایط و مشاهده‌های شده در این مقاله طراحی شده. این سیستم می‌تواند برای کارهایی مانند مسیر گیری، بهبود و تغییرات ارتفاع و پهپاد گزارش‌هایی از زمین ممکن باشد. کارآیی قابل قبولی از این نتیجه‌گیری گردیده است.

YPوهشی، SLAM ایرانی شده در شرایط مساعدی بر روی یک پهپاد با توان درجات آزادی (شش درجه آزادی) پیاده شده و کلیه روابط مورد نیاز را استخراج و تحلیل شد. نتایج قابل توجه در سیستم پیشنهادی، عدم محدودیت در ارتفاع نشان‌های زمینی است. در کلیه کارهای فیلتر که در زمین SLAM برای پیاده‌سازی گرفته و موجود آن فرض استفاده شده که کلیه نشان‌های از ارتفاع‌ها است. پهپاد قرار داشته و به نوعی درجه‌آزادی مربوط به تغییرات ارتفاع پهپاد را از تاریخ‌های سادگی‌کار و هم‌واره به پهپاد را در یک ارتفاع خاص در نظر می‌گیرند. اما در سیستم ایرانی شده در این مقاله نشان‌های از لحاظ میزان ارتفاع هیچ محدودیتی ندارند. تیم نشریه سامانه‌های غیرخطی در مهندسی برق، دوره 1، شماره 1، تیر 1394

2532.

[29] Li, X., Aouf, N., Nemra, A.: '3D Mapping based VSLAM for UAVs', In Mediterranean Conf. on Control & Automation (MED), Barcelona, Spain, July 2012, pp. 348-352.

[32] Samadzadegan, F., Abdi, G.: 'Autonomous navigation of Unmanned Aerial Vehicles based...

[34] Won, D.H., Sung, S., Lee, Y.J.: 'UKF based vision aided navigation system with low grade IMU', In Int. Conf. on Control Automation and Systems (ICCAS), Gyeonggi-do, South Korea, October 2010, pp. 2435-2438.

