تحليل قابلیت اطمینان طراحي اولیه سیستم برق و کنترل دستگاه حفاری افقی

فرزین صالحی‌نژاد استوکیویêt۱، محمد بورگل محمدی۲، امین میری مرادی۲ و کمال عباسی‌پور۴

۱دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تبریز، ایران
۲نویسندگان: استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تبریز، ایران
۳دانشکده مهندسی معدن، دانشگاه صنعتی خواجه نصیرالدین طوسی، تبریز، ایران
۴گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد جلفا، ایران

(تاریخ دریافت مقاله: ۱۳۹۲/۰۷/۰۷ تاریخ پذیرش مقاله: ۱۳۹۲/۰۳/۰۴)

چکیده: تحلیل قابلیت اطمینان و ارائه مدل مناسب برای بیان ارتباط بین اجزاء مختلف از اهمیت فراوانی برخورد است. نظریه با تغییر قابلیت اطمینان اجزاء، می‌توان قابلیت اطمینان کل سیستم را بیان کرد. هدف از انجام این پژوهش، تحلیل قابلیت اطمینان سیستم برق و کنترل یک دستگاه حفاری افقی است که در فاز طراحی بوده و داده‌های مربوط به دسترس نمی‌باشد. در این روش ابتدا اجزاء مختلف سیستم ساختاری شده و نحوه عملکرد آنها و همچنین نحوه ارتباط آنها با یکدیگر بررسی شده. با یکگیری داده‌های موجود در استانداردهای متفاوتاند MIL-HDBK-217F و EPRD و نخ خرای و میانگین ZMAN بین حساب مربع می‌گردد. با استفاده از این اطلاعات، مدل قابلیت اطمینان سیستم توسیع یافته و نحوه ارتباط اجزاء در دیدگاه قابلیت اطمینان گردید. جهت تحلیل کل سیستم از نظر قابلیت اطمینان از نرم‌افزارهای مربوط در این زمینه استفاده می‌شود. در این روش می‌توان با استفاده از محاسبات اهمیت قابلیت اطمینان، اهمیت اجزاء مختلف سیستم از دیدگاه قابلیت اطمینان را تعیین کرد. همچنین می‌توان با استفاده از روش تخصصی قابلیت اطمینان، مقدار قابلیت اطمینان مورد نیاز در یک اجزاء اصلی سیستم یا سطح برای قابلیت اطمینان هدف را تعیین کرد. در نهایت نیز اضافه کردن داده‌های نگهداری و تعریفات مربوط به یک اجزاء اجزاء، مقادیر قابلیت دسترسی و ویژگی‌های مربوط به آن محاسبه می‌شود. این روش به عنوان نمونه بر روی سیستم برق و کنترل یک ماشین حفاری افقی در فاز طراحی اعمال شده و نتایج مربوط به آن ارائه گردیده است.

کلمات کلیدی: تحلیل قابلیت اطمینان - قابلیت دسترسی - فاز طراحی - سیستم برق و کنترل - ماشین حفاری افقی

۱ مقدمه

یک سیستم، حاوی مجموعه‌ای از اجزاء (مولته، زیرسیستم، قطعات و ...) است که با یک گروه طبقه‌بندی در یک نمودار یکدیگری می‌توانند سبب عملکرد بهینه سیستم شوند. تحلیل قابلیت اطمینان و ارائه مدل مناسب برای بیان ارتباط بین اجزاء مختلف از اهمیت فراوانی برخورد است. نظریه با تغییر قابلیت اطمینان اجزاء، می‌توان قابلیت اطمینان کل سیستم را بیان کرد. خروجی به یک اجزاء نیز بر روی کل سیستم تأثیر گذار است و باید در تحلیل های قابلیت اطمینان مورد نظر قرار گیرد [1]. مطالعات قابلیت اطمینان بعنوان
یک بخش قبل توجه در پژوهش‌های مدیریت نت ۱ در نظر گرفته می‌شود. این روش، در صنایع، به دلیل پیچیدگی تجربیات از کارایی بالایی برخوردار است و داشتن بی‌پایان بالاتر تجربیات می‌شود. در واقع، تجزیه و تحلیل مبنا بر قابلیت اطمنی تجربیات برای شناسایی ویژگی‌های عملیاتی تجربیات و برنامه‌ریزی مناسب در آن‌ها است (۲-۳). در سال‌های اخیر، طراحی می‌تواند بشر در این اثر عمل حاصل کلیه اطمنی در شرایط مفاهیمی در فاز طراحی و کار در اثر آن‌البی درخت Avontuur و همکارانش (۴) با عوامل تحلیل قابلیت اطمنی در فاز طراحی و کار بردن آن‌البی درخت خبری در این فاز بر روی یک سیستم رسانه، به مقایسه‌ی ثابت به جهت تجربیات کار رفته در تجربیات مدنی پرا. از این پژوهش به کمک داده‌های تجربی و با استفاده از روابط ساده احتمالاتی، مقدار قابلیت اطمنی بانک‌هایی برد دهه‌های مختلف تعیین شده و همکارانش (۴) با مقایسه روش روش طراحی سیستم قابلیت اطمنی با روش طراحی کلاسیک، به توسه Yuanfan است. Abo Al-kheer است.

1. جهت تعیین قابلیت اطمنی دستگاه‌های شرکتی جهت به‌طور مکانیکی سیستم‌های مختلف، به تحلیل قابلیت اطمنی بانک‌هایی از دهه‌های تجربی برای تحلیل قابلیت اطمنی اساسی شده و در مورد سیستم‌های که اطلاعاتی در مورد خرابی اجزاء آنها نیست، روش مجموعی ارائه شده است. همچنین در بخش پژوهش‌های انگلیسی و سیستم‌های دارای نیروهای افقت و اصولی نیز تأثیر از قابلیت اطمنی سیستم مورد بررسی قرار گرفته است. با توجه به مطالب اشتراک گذشته، هم‌اکنون از دهه‌های تجربی برای تحلیل قابلیت اطمنی اساسی شده و در مورد سیستم‌های که اطلاعاتی در مورد خرابی اجزاء آنها نیست، روش مجموعی ارائه شده است. همچنین در بخش پژوهش‌های انگلیسی و سیستم‌های دارای نیروهای افقت و اصولی نیز تأثیر از قابلیت اطمنی سیستم مورد بررسی قرار گرفته است. با انجام تخصص قابلیت اطمنی نیز پیش‌هماتی از مورد ویژگی قابلیت اطمنی قطعات مختلف بکار رفته در سیستم و نحوه انتخاب آنان ارائه شده است. ویژگی دیگرپژوهش حاضر، توانایی آن در تحلیل سیستم‌ها و کنترل ابزار آنها می‌باشد.

1. نگهداری و تعیین
2. Conceptual design
3. Generic data
4. Expert judgment
روش مشابه

در این بخش روشی مناسب برای تحلیل قابلیت اطمینان یک سیستم با ویژگی‌های خاص (در فاز طراحی بودن سیستم و عدم دسترسی کامل به داده‌های خرابی اجزا مختلف آن) آنها را می‌بیند.

1- شناخت اجزا سیستم و استخراج داده‌های خرابی

در گام نخست انتظارات مورد نیاز کاربردی برای استخراج قابلیت اطمینان سیستم مورد بررسی قرار می‌گیرد. تعیین هدف ۱ در تحلیل‌های قابلیت اطمینان از همه مدل‌های مناسب برای داده‌های خرابی و تعریف ۱ مورد موجود در طراحی سیستم به‌عنوان ملاحظاتی انتخاب و مورد مطالعه قرار می‌گیرد. در پایان این مرحله، کلیه روابط و اجزاء سیستم شناخته شده و ساختار سیستم و عملکرد آنها مشخص می‌گردد.

در گام بعدی مدل‌های زمان بین خرابی‌های هر یک از اجزاء محاسبه می‌شود. گردآوری داده‌های خرابی با استفاده از مدل‌های گوگاندویی امکان‌پذیر است. از آن جمله می‌توان به داده‌های میدانی و داده‌های علوم اطلاعاتی جهت استخراج داده‌های خرابی علومی مربوط به پیک سیستم، از داده‌های خرابی سیستم‌های مشابه استفاده می‌شود. با در نظر گرفتن شرایط محیطی، نحوه عملکرد و وظایف مربوط به هر یک از قطعات و همچنین با توجه به رخ خرابی حاصل از آزمایشات انجام گرفته بر روی نمونه‌های مشابه (رخ خرابی پایه)، رخ خرابی قطعه مورد نظر تخمین زده می‌شود. داده‌های استخراج شده توسط مراجعه و استناد به صندوق [۸] و [۹] NPREDA5 [۱۰] و EPRD95 [۱۱] و نمود. (داده‌های قابلیت اطمینان مربوط به اجزاء مختلف تأسیسات دریایی) [۱۲]

\[1\] Mission
\[2\] Constraints
گزارش: تحلیل قابلیت اطمینان طراحی اولیه سیستم بر مبنای نظریه توزیع های مشابهی

در اینجا، مدل سیستم از دیدگاه قابلیت اطمینان پس از پخش آورده اطلاعات مربوط به خرابی‌های هر یک از اجزا، در گام بعدی به مدل‌سازی سیستم از دیدگاه قابلیت اطمینان پرداخته می‌شود. نحوه ارتباط اجزا و زیرسیستم‌های مختلف با توجه به معیارهای ساختار سیستم در بحث قابلیت اطمنان، در این گام مشخص می‌گردد. پس از مدل‌سازی سیستم، می‌توان با استفاده از روش‌های محاسباتی معین، قابلیت اطمنان کل سیستم را با توجه به قابلیت اطمنان زیرسیستم‌های آن، تعیین نمود.

این اجسام محاسبات قابلیت اطمینان، متوسط به محاسبه شاخص‌های قابلیت اطمنان سیستم می‌باشند. یکی از شاخص‌های پیش‌بینی قابلیت اطمنان، زمان متوسط تا اولین خرابی (MTTF) می‌باشد (14-15). هرچه زمان متوسط تا اولین خرابی بیشتر باشد، قابلیت اطمنان سیستم بالاتر خواهد بود. پارامتر MTTF بصورت رابطه 2 و غالباً در واحد ساعت تعیین می‌شود.

\[
MTTF = \int_0^\infty R(t) \, dt
\] (2)

قابلیت اطمنان سیستم پویا و جهت محاسبه آن لازم است تا ابتدا نتایج توزیع احتمال خرابی مربوط به سیستم تعیین گردد. این توزیع معمول با استفاده از داده‌های تجربی مربوط به سیستم تعیین می‌گردد. در مورد سیستم‌های که در مورد آنها داده‌های می‌باشد، به علت تابع نتایج توزیع احتمالی وایبل و پارامتر رابطه 3 است. آن است.

\[
f(t) = \frac{\beta(t)^{\beta-1}}{\alpha^\beta} \exp \left[-\frac{(t-\mu)}{\alpha} \right] \quad \alpha, \beta > 0, \quad t > 0
\] (3)

که در آن، \(\alpha\) به ترتیب بانک‌گر پارامتر مقدار و پارامتر شکل می‌باشد. قابلیت اطمنان توزیع وایبل بصورت رابطه 4 محاسبه می‌شود.

\[
R(t) = e^{-\frac{(t-\mu)}{\alpha}^\beta}
\]

\[
MTTF = \alpha \times \Gamma\left(\frac{1}{\beta} + 1\right)
\] (5)

\[\text{Two-parameter Weibull probability distribution}\]
در رابطه فوق منظور از Γ می‌باشد که تابع گاما غیرمنتغیر با رابطه ۴ و ۵ و نیز به یک روش شبیه‌سازی مناسب می‌توان قابلیت اطمینان سیستم را که مشکل از اجزای مختلف می‌باشد، تخمین زد.

۳- روش شبیه‌سازی مونت-کارلو

روش مونت-کارلو یک الگوریتم محاسباتی است که از نمونه‌گیری تصادفی برای محاسبه نتایج استفاده می‌کند [۱۲]. روشهای کارلو در مورد تحلیل قابلیت اطمینان سیستم‌هایی که از اجزاء مختلف با ترتیب‌بندی‌های مناسب ترکیب شدهاند و محاسبه پاسخ دقیق با کمک الگوریتم‌های پردازش ناموجود باشد، مورد استفاده قرار می‌گیرد. همچنین در شبیه‌سازی سیستم‌های همجوف سیستم موتور ماله در پژوهش حاضر که عدم قطعیت زیادی در ورودی‌های آنها و وجود دارد می‌توان از این روش استفاده نمود. به همین منظور با توجه به دقت مورد نیاز، قابلیت اطمینان و قابلیت دسترسی به یک از اجزاء بر مبنای محاسبات تکرار شونده تصادفی، برای یک گام زمانی محاسبه می‌شود. محاسبات تکرار شونده در هر گام زمانی تا جابجایی ادامه می‌کند که نتایج به یک مقدار مشخصی همگرا شوند. سپس اطلاعات بدست آمده در هر گام زمانی، به عنوان ورودی برای گام بعدی در نظر گرفته می‌شوند. در نهایت کل سیستم برای مدت زمان معین شبیه‌سازی شده و نتایج آن استخراج می‌گردد. به عنوان مثال، در مورد نتایج فوق استفاده از الگوریتم لحظه‌ای با نام Time-to-Failure (هکواخت توزیع شدهاند، انتخاب می‌گردد. به ایزه هر یک از این مقادیر تصادفی، زمان خرابی (Time-to-Failure) از رابطه ۴ استخراج می‌گردد.

$$t = -(\ln(U))^\beta \times \alpha$$

رونه تعیین مقادیر تصادفی و استخراج زمان خرابی در شکل ۲ نشان داده شده است.

شکل ۲: نحوه انتخاب مقادیر تصادفی در فرآیند شبیه‌سازی مونت-کارلو

این کار برای تمامی اجزاء سیستم در هر گام انجام گرفته و نهایتاً قابلیت اطمینان کل سیستم در آن گام تعیین می‌گردد. به ایزه ترتیب

کل سیستم برای مدت زمان معین شبیه‌سازی شده و نتایج محوره با قابلیت اطمینان آن استخراج می‌گردد. همچنین در مورد قابلیت دسترسی سیستم نیز مراحل مشابه انجام گرفته و نتایج مورد نظر حاصل می‌شود.

۱ Monte Carlo
4- اهمیت قابلیت اطمینان

اندازه‌گیری اهمیت قابلیت اطمینان روشی برای شناسایی اهمیت نسبی هر مؤلفه با توجه به قابلیت اطمینان کلی سیستم است. اهمیت قابلیت اطمینان ممکن است به وسیله‌ی فردی اجراء گردد و همچنین ممکن است بر اساس مدل‌های آماری اجراء نماید. برای تعیین مقدار اهمیت قابلیت اطمینان، باید نسبت تغییرات قابلیت اطمینان سیستم را بر تغییرات قابلیت اطمینان اجزاء آن محاسبه کرد. مقدار اهمیت قابلیت اطمینان در صورتی که با یک مؤلفه آن در سیستم با N مؤلفه، بصورت مداوم در N عنوان قابلیت اطمینان Q(t) = \frac{\partial R_i(t)}{\partial R_i(t)} \text{ محاسبه می‌شود:}

\[I_R(t) = \frac{R_Q(t)}{R_i(t)} \]

که Q(t) قابلیت اطمینان سیستم، R_i(t) قابلیت اطمینان مؤلفه آن است [9].

5- تخصیص قابلیت اطمینان

طرح در فاز طراحی یک سیستم، وزیگی‌های قابلیت اطمینان مورد نظر را تعیین کرده و طراحی خود را بر مبنای رسیدن به آن هدف توصیه می‌دهد. روش تخصیص قابلیت اطمینان وسیع، با در نظر گرفتن اهمیت هر یک از اجزاء سیستم در تعیین قابلیت اطمینان کل آن، قابلیت اطمینان مورد نظر با توجه به نسبت این اجزاء را در راستای بهبود سیستم به هدف مورد نظر تعیین می‌کند. در پژوهش حاضر اهمیت هر یک از اجزاء بر مبنای آنالیز اهمیت قابلیت اطمینان که در بخش 5 این اشاره شد، تعیین می‌گردد و بر اساس این داده‌ها، مقادیر مورد نیاز برای قابلیت اطمینان تمامی اجزاء محاسبه می‌شود.

6- ارزیابی قابلیت دسترسی سیستم

در یک سیستم قابلیت تعمیر، به دلیل اعمال فرآیند نوسازی 16، بر روی اجزاء، مقدار قابلیت اطمینان، به تنهایی مفهومی ندارد. از این رو، در تحلیل سیستم‌های مذكره از بحث مذکور در پیشگیری تحت عنوان قابلیت دسترسی استفاده می‌شود. این کمیت بطور بهترین‌سازی قابلیت اطمینان سیستم و مراتب از کار تغییرات سیستم را انعکاس می‌دهد [17]. رابطه 8 نحوه محاسبه قابلیت دسترسی یک سیستم قابلیت تعمیر را بیان می‌کند.

\[A(t) = R(t) + \int_0^t R(t-u)m(u)du \quad 0 < u < t \]

در رابطه 8 زمان آمار، این تعمیر بوده و m(u) تابع جگالی نوسازی ی می‌باشد.

کاربرد تحلیل قابلیت اطمینان برای یک سیستم حفاری افتق در فاز طراحی

کاربرد ماشین‌های حفاری و به‌خصوص نوع افتق آنها، به‌دلیل گسترش فعالیت‌های حفاری و جالنی، و تهدید روش به‌شکل داشته است. سیستم بر قرار داشتن به‌عنوان یکی از اجزاء مهم در ماشین‌های حفار شمار می‌رود. به‌طوری‌که برای فعال‌سازی اجزاء مختلف ماشین حفار از زمان آغاز به کار دستگاه تا مراحل پایدار سازی و اجرای عملیات حفاری مورد استفاده قرار می‌گرفته و باین سیستم

*1 Reliability Importance
*2 Reliability Allocation
*3 Renewal process
*4 Renewal density function
مکانیکی دستگاه در ارتباط می باشد. از این رو تحلیل قابلیت اطمینان این سیستم در طراحی‌های اولیه آن از اهمیت فراوانی برخوردار است. در ادامه به بررسی نحوه اعمال روش ارائه شده در این پژوهش بر روی سیستم مذکور پرداخته می‌شود.

۲- تحلیل قابلیت اطمینان سیستم برق و کنترل ماشین حفاری

سیستم برق و کنترل بعنوان یکی از اجزاء مهم در ماشین‌های مکانیکی بشری می‌روند. این سیستم به‌طوریکه رخ دادن خرابی در سیستم می‌تواند سبب توقف عملیات گردد. سپاس از انتخاب سیستم برق و کنترل، بی‌ربط‌گی این سیستم مخصوصاً تعداد بسیار زیاد حالات‌های ممکن (تعداد زیاد اجزاء) و متنوع بودن مودهای خرابی آن می‌باشد. که ارزیابی جامع سیستم را با جالبه‌کننده‌ی زیادی مواجه می‌کند.

کلیه اجزاء سیستم برق و کنترل دستگاه حفاری، با استفاده از طراحی مکانیکی شناسایی شده و مشخصات فنی هر یک از آنها تعیین شده است. در جدول ۱ تعدادی از این اطلاعات نشان داده شده است. اطلاعات کلیه قطعات در مرجع [۱۵] ارائه شده است.

<table>
<thead>
<tr>
<th>شرح وظیفه</th>
<th>کروه</th>
<th>نام اجزاء</th>
<th>شماره در پنجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>چرخاندن کابین</td>
<td>Cab Side-Right</td>
<td>SWITCH-SPDT 3 POSITION MOM</td>
<td>4-4-11</td>
</tr>
<tr>
<td>لامپ هشدار دهنه</td>
<td>Control Panel/Upper RH W</td>
<td>GAUGE - 7500 PSI - SPAN - JIC - LIGHT-12V lamp</td>
<td>4-8-2A</td>
</tr>
<tr>
<td>کلید فعال کابین</td>
<td></td>
<td>SWITCH - PUSH BUTTON HYDRAULIC ENABLE-push button NO</td>
<td>4-8-4</td>
</tr>
<tr>
<td>کلید حفاری خودکار</td>
<td></td>
<td>SWITCH-MOM BUTTON NO-push button NO</td>
<td>4-8-5</td>
</tr>
<tr>
<td>لامپ نشانگر</td>
<td></td>
<td>LIGHT - REMOTE LOCKOUT-GREEN</td>
<td>4-8-7A</td>
</tr>
</tbody>
</table>

در این پژوهش با یک فرآیند استاندارد‌های MTBF، NPRD و MIL-HDBK 217F محاسبات مربوط به و نرخ خرابی هر یک از اجزاء تعیین می‌گردد. در جدول ۲ تعدادی از نتایج این محاسبات ارائه شده است. محاسبات کلی از این زمینه در مرجع [۱۸] ارائه شده است.
جدول 2: نمایش محاسبات مربوط به MTBF و نرخ خرابی اجزا سیستم برق و کنترل دستگاه حفاری

<table>
<thead>
<tr>
<th>Failure Rate Per 10^6 hours</th>
<th>MTBF(hours)</th>
<th>Component</th>
<th>Figure Number</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06</td>
<td>9.4E5</td>
<td>SWITCH-SPDT 3 POSITION MOM</td>
<td>4-4-11</td>
<td>Cab Side-Right</td>
</tr>
<tr>
<td>6.0241</td>
<td>1.66E5</td>
<td>GAUGE - 7500 PSI - SPAN - JIC - LIGHT-12V lamp</td>
<td>4-8-2A</td>
<td>Control Panel/Upp RH W</td>
</tr>
<tr>
<td>6.0241</td>
<td>1.66E5</td>
<td>GAUGE - 7500 PSI - SPAN - JIC - LIGHT-12V lamp</td>
<td>4-8-2B</td>
<td>Control Panel/Upp RH W</td>
</tr>
<tr>
<td>6.0241</td>
<td>1.66E5</td>
<td>GAUGE - 2000 PSI - SPAN - JIC - LIGHT-12V lamp</td>
<td>4-8-3</td>
<td>Control Panel/Upp RH W</td>
</tr>
<tr>
<td>4.62</td>
<td>2.1E5</td>
<td>SWITCH - PUSH BUTTON HYDRAULIC ENABLE-push button NO</td>
<td>4-8-4</td>
<td>Control Panel/Upp RH W</td>
</tr>
</tbody>
</table>

سیستم برق و کنترل ماشین حفاری مذکور از دو قسمت کلی تشکیل شده است. یک بخش شامل سیستم الکتریکی و اجزاء مربوط به آن بوده و بخش دیگر شامل سیستم هیدرولیکی و قسمت‌های مختلف آن می‌باشد. قسمت الکتریکی شامل اجزاء مختلفی می‌باشد که مبهم از آنها بطور مستقیم بر عملکرد ماشین تاثیر گذاشته. با توجه به ویژگی‌های ساختاری سیستم‌ها در مطالعه قابلیت اطمینان جهت قطع برخی سیستم‌ها و خاموش شدن آنها است. می‌توان اجزاء، مواردی را به صورت شکل 3 مدل‌سازی نمود. شاید ذکر کند که در این سیستم عملکرد تعدادی اجزاء از دیدگاه قابلیت اطمینان صورت می‌گیرد و سیستم‌های اجزا می‌باشد. بعنوان مثال کلیه اجزا که به صورت جهت قطع قبلاً در دستگاه و خاموش شدن خطایی در رابطه با اجزا هستند. یکی از آنها به‌طور کلی به‌صورت مورد نظر را انجام دهد.

زیر سیستم هیدرولیکی نیز از اجزاء معمول تشکیل شده است که عملکرد هر بک آنها بر روی کنترل ماشین تاثیر گذار است.

شکل 3: مدل‌سازی یکی از قابلیت اطمینان زیر سیستم الکتریکی
با توجه به ویژگی‌های ساختاری سیستم در تحلیل قابلیت اطمینان، نحوه ارتباط اجزاء مختلف در این زیرسیستم در شکل 4 نشان داده شده است.

شکل 4: مدلسازی بلوری قابلیت اطمینان زیرسیستم هیدرولیک

قابلیت اطمینان و احتمال رخداد خرابی برای سیستم‌های الکتریکی و هیدرولیکی و همچنین قابلیت اطمینان کل سیستم در زمان‌های مختلف در جدول 3 آرشیف شده است. همانطور که ملاحظه می‌شود، در صورتی که سیستم غیر قابل تعییر باشد، بعد از 2000 ساعت کارکرد، قابلیت اطمینان آن مقدار سیسمی بالاترتر 500/0% می‌باشد. به همین دلیل و با توجه به قابل تعییر بودن سیستم بر قدرعت دستگاه حفاری در ادامه اطلاعات مربوط به نگهداری و تعییرات اجزاء سیستم نیز اعمال شده و نتایج آن ارائه می‌گردد.

جدول 3: قابلیت اطمینان برای سیستم‌های الکتریکی و هیدرولیکی و کل سیستم

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>سیستم الکتریکی</th>
<th>سیستم هیدرولیک</th>
<th>کل سیستم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.73</td>
<td>0.88</td>
<td>0.83</td>
<td>500</td>
</tr>
<tr>
<td>0.54</td>
<td>0.78</td>
<td>0.70</td>
<td>1000</td>
</tr>
<tr>
<td>0.30</td>
<td>0.61</td>
<td>0.48</td>
<td>2000</td>
</tr>
<tr>
<td>0.08</td>
<td>0.37</td>
<td>0.23</td>
<td>4000</td>
</tr>
<tr>
<td>0.007</td>
<td>0.14</td>
<td>0.055</td>
<td>8000</td>
</tr>
<tr>
<td>0.0000005</td>
<td>0.007</td>
<td>0.00007</td>
<td>20000</td>
</tr>
</tbody>
</table>

با مقایسه نتایج مربوط به قابلیت اطمینان زیر سیستم‌های الکتریکی و هیدرولیکی دستگاه حفاری افقت با نتایج مربوط به سایر تجهیزات معدنی که اطلاعات میدانی خراب و تعییر مربوط به آنها در دسترس می‌باشد، ملاحظه می‌گردد که روند نتایج بدست آمده تا حدود زیادی مطابق نتایج حاصل از سیستم‌های رافعی می‌باشد. به عونان مثل در جدول 4 اطلاعات مربوط به قابلیت اطمینان زیرسیستم‌های الکتریکی و هیدرولیکی دامپرک‌ها (از دستگاه‌های حمل و نقل سنگی موجود در صنعت معدن) [17] ارائه شده است.
جدول ۴: نتایج مربوط به داده‌های واقعی مربوط به دامتارک‌ها

<table>
<thead>
<tr>
<th>قابلیت‌اتمیان سیستم الکترونیکی</th>
<th>قابلیت‌اتمیان سیستم هیدرولیکی</th>
<th>زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۰/۹۱۹</td>
<td>۰/۸۷۱</td>
<td>۵۰</td>
</tr>
<tr>
<td>۰/۸۴۵</td>
<td>۰/۷۵۹</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰/۷۳۲</td>
<td>۰/۶۴۷</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۰/۴۲۹</td>
<td>۰/۳۸۸</td>
<td>۲۵۰</td>
</tr>
<tr>
<td>۰/۱۸۴</td>
<td>۰/۱۰۸</td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۰/۶۷۰</td>
<td>۰/۰۱۰</td>
<td>۳۰۰۰</td>
</tr>
</tbody>
</table>

همانطور که ملاحظه می‌شود، روند تغییرات قابلیت اتمیان حاصل از این پژوهش با نتایج مربوط به داده‌های واقعی همخوانی دارد.

پس از بررسی سیستم‌های انتخاب شده برای ماسین حفاری و شناسایی کیفی اجرا ای با حداکثر قابلیت اتمیان، می‌توان مهندسین اجرا سیستم‌ها به صورت کمی محاسبه کرد. این فرآیند با استفاده از مقادیر اندام‌های گیری اهمیت انجام می‌گیرد. در نتیجه اعدادات لازم برای بهبود سیستم‌های قارچی و برناهای زیر می‌شود. با توجه به اطلاعات ارائه داده در جدول ۵ این پیشنهاد می‌باشد برای افزایش اهمیت و تأثیر یک پیش‌بینی بهبود یافته در قابلیت اتمیان به‌کل سیستم‌ها برای داده‌های گیری اهمیت کل سیستم در جدول ۵ ارائه شده است.

جدول ۵: اندام‌های اهمیت قابلیت اتمیان برای کل سیستم (کارکرد ۵۰۰۰ ساعت)

<table>
<thead>
<tr>
<th>اندام‌های اهمیت</th>
<th>زیر سیستم</th>
</tr>
</thead>
<tbody>
<tr>
<td>الکترنیکی</td>
<td>۲۹۸</td>
</tr>
<tr>
<td>هیدرولیکی</td>
<td>۱۴۱</td>
</tr>
</tbody>
</table>

با توجه به داده‌های مربوط به قابلیت اتمیان هر یک از قطعات، می‌توان اهمیت هر یک را در زیر سیستم‌های مربوطه تعیین نمود. مدتر زمان مورد نظر در این آنالیز، ۵۰۰ ساعت در نظر گرفته شده است. بر این اساس اهمیت قطعات موجود در زیر سیستم الکترنیکی و هیدرولیکی در جدول ۶ ارائه شده است.
<table>
<thead>
<tr>
<th>مقدار اهمیت</th>
<th>زیر سیستم هیدرولیک</th>
<th>مقدار اهمیت</th>
<th>زیر سیستم الکتریکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>water pump pressure sensor</td>
<td>0.288</td>
<td>Control Panel/Upper RHW</td>
</tr>
<tr>
<td>0.013</td>
<td>Stakedown</td>
<td>0.241</td>
<td>Fuel sensor</td>
</tr>
<tr>
<td>0.012</td>
<td>Components-Valve Proportional/Dump</td>
<td>0.204</td>
<td>Battery Compartment</td>
</tr>
<tr>
<td>0.012</td>
<td>Vise Clamp</td>
<td>0.183</td>
<td>Spindle speed</td>
</tr>
<tr>
<td>0.011</td>
<td>Valve-Remote Lockout</td>
<td>0.182</td>
<td>RIGHT JOYSTICK comps</td>
</tr>
<tr>
<td>0.011</td>
<td>Rod Loader</td>
<td>0.181</td>
<td>LEFT JOYSTICK comps</td>
</tr>
<tr>
<td>0.010</td>
<td>Block-Transducer</td>
<td>0.180</td>
<td>LSYABIA</td>
</tr>
<tr>
<td>0.009</td>
<td>90 Series 55cc HYD. Pump</td>
<td>0.174</td>
<td>Control Panel-LH</td>
</tr>
</tbody>
</table>

جدول 2: نمونه از اطلاعات مربوط به اهمیت اجزاء مختلف زیر سیستم های الکتریکی و هیدرولیکی از دید قابلیت اطمینان

جدول 7: مقادیر قابلیت اطمینان فعلي در زمان 5000 ساعت، که بايد به قابلیت اطمینان هدف برسد

<table>
<thead>
<tr>
<th>زیر سیستم الکتریکی</th>
<th>نام اجزاء</th>
<th>وزن</th>
<th>قابلیت اطمینان فعلي (5000 ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.967</td>
<td>0.164</td>
<td>0.291</td>
<td>0.164</td>
</tr>
<tr>
<td>0.981</td>
<td>0.291</td>
<td>0.291</td>
<td>0.164</td>
</tr>
</tbody>
</table>

1 Target Reliability
2 Confidence Level
با توجه به اطلاعات ارائه شده در مورد برنامه‌های تجاری و تعمیرات، در این پروژه، این مسئله ابتدا به‌صورت می‌باشد و با در نظر گرفتن شده است و تعمیرات طولی طراحی شده، که حالت اطلاعات بعد از تعمیر بصورت "موفق" در نظر گرفته شود. برای تعیین زمان لازم برای تعمیری قطعات نیز از نظرات کارشناسی استفاده شده است.

لازم به ذکر است که نحوه انتخاب توزیع مناسب و همچنین مدت زمان لازم برای تعمیر توسط کارشناسی منظوره، کارشناسی و همچنین اطلاعات مربوط به مورد دامپ‌ها محسوبی شده است [17]. چگونه با استفاده از نظارت کارشناسی و همچنین اطلاعات موجود در مورد دامپ‌ها، کارشناسی با توجه به مقدار تعداد اجزای سیستم و با اعمال روش مونت کارلو، سیستم لازم مدت زمان ۱۰۰۰ ساعت شیء‌سازی شده و توجه مربوط به زیرسیستم‌های الکتربولیک، هیدربولیک و همچنین کل سیستم (الکتروپیک، هیدربولیک) در جدول ۸ نشان داده شده است.

جدول ۸: یک های مربوط به زیرسیستم الکترولیک، هیدربولیک و کل سیستم در زمان ۱۰۰۰ ساعت کارکرد

<table>
<thead>
<tr>
<th>عوامل</th>
<th>کل سیستم</th>
<th>زیرسیستم الکترولیک</th>
<th>زیرسیستم هیدربولیک</th>
<th>میزان متوسط قابلیت‌های آماری (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۲</td>
<td>۹۴/۶۹</td>
<td>۹۴/۷۸</td>
<td>افزایش میزان تعداد اجزاء مربوط به توزیع خرابی</td>
<td>متوسط زمان در اولین خراب (ساعت)</td>
</tr>
<tr>
<td>۴۰۸/۸</td>
<td>۹۴/۷۹</td>
<td>۹۴/۷۹</td>
<td>قابلیت دسترسی نجات (ساعت)</td>
<td>متوسط زمان در اولین خرابی (ساعت)</td>
</tr>
<tr>
<td>۲۰۲۴</td>
<td>۹۴/۷۹</td>
<td>۹۴/۷۹</td>
<td>قابلیت اطمینان (ساعت)</td>
<td>متوسط زمان در اولین خرابی (ساعت)</td>
</tr>
<tr>
<td>۱۸۵۸</td>
<td>۹۴/۷۹</td>
<td>۹۴/۷۹</td>
<td>متوسط زمان در اولین خرابی (ساعت)</td>
<td>متوسط زمان در اولین خرابی (ساعت)</td>
</tr>
</tbody>
</table>

این نتایج شامل قابلیت‌های میانگین، افزایش میزان تعداد اجزاء، قابلیت دسترسی نجات، قابلیت اطمینان و میزان متوسط زمان در اولین خرابی می‌باشد.

1. As good as new
2. MIL SPEC
3. Lower Quality
4. Monte Carlo Method
9- بررسی نتایج

با توجه به مطالعه مذکور، متوسط قابلیت دسترسی کل سیستم برای مدت زمان 1000 ساعت، برای با 92/1 درصد است. همچنین قابلیت اطمینان کل سیستم، در مدت زمان 1000 ساعت، برای با 24/00 درصد است. همانتظور که مشاهده می‌شود، قابلیت اطمینان سیستم به سمت صفر می‌کند.

با توجه به محاسبه اهمیت قابلیت اطمینان زیرسیستم‌ها، مشخص گردید که در تعیین قابلیت اطمینان کل، زیرسیستم‌های کلیکی، نسبت به زیرسیستم‌های هیرودولکی، نقش مهم‌تری دارد. بنابراین، بهبود کیفیت و قابلیت اطمینان اجزاء زیرسیستم کلیکی تأثیر بیشتری بر روی قابلیت اطمینان کل سیستم خواهد داشت. لذا، بهبود عملکرد سیستم تمرکز بر روی افزایش کیفیت اجزاء زیرسیستم کلیکی توصیه می‌شود.

برای بهبود قابلیت اطمینان کل سیستم، از روش تخصیص قابلیت اطمینان استفاده شده است. بر این اساس، قابلیت اطمینان هدف، برای مدت زمان 5000 ساعت، در نظر گرفته شده است. با توجه به محاسبات مربوطه، برای دستیابی به هدف مذکور، باید قابلیت اطمینان هر یک از زیرسیستم‌های کلیکی و هیرودولکی مطابق با جدول 6 تغییر یابد.

10- نتیجه‌گیری

در پژوهش حاضر رویکده جهت تحلیل قابلیت اطمینان سیستم‌های که در فاز طراحی بوده و دسترسی به اطلاعات لازم در مورد تخریب اجزاء آنها امکان پذیر نیست، ارائه گردید. با استفاده از این روش می‌توان قابلیت اطمینان سیستم‌های را که اطلاعاتی در مورد ورود طراحی و ساخت آنها در دسترس نبوده و نتیجه به کمک مهندسی معکوس، اطلاعات مربوط به اجزای آن شناسایی می‌شود، تعیین نمود. نتایج حاصل از مطالعه موردی ارائه شد در این پژوهش بیانگر مناسب بودن روش ارائه شده برای این قبیل مسائل می‌باشد. با استفاده از این روش همچنین اجزاء مختلف سیستم از دیدگاه قابلیت اطمینان اولویت بندی می‌شوند. بدون ترتیب می‌توان با استفاده از نتایج اولویت بندی، روند طراحی اجزاء مختلف سیستم را تعیین نمود. همچنین در این روش می‌توان قابلیت اطمینان اجزاء مختلف را جهت رسیدن به مقادیر قابلیت اطمینان هدف برای کل سیستم، تعیین نمود. در نتیجه اجزاء مختلف سیستم با توجه به تأثیر آنها بر روی قابلیت اطمینان کل سیستم، انتخاب می‌شوند.

به عنوان پیشنهاد جهت ادامه کار در این زمینه، می‌توان یا به‌کارگیری روش تحلیل وردی‌های خرابی و از آنات آن (FMEA) تحلیل درخت خرابی و روش‌های مشابه بصورت مکمل با روش ارائه شده در این پژوهش، نتایج کامل و جامعتی از قابلیت اطمینان و قابلیت دسترسی سیستم مورد نظر استخراج نمود.

مراجع

[18] Vermeer D36x50.