الگوریتم بهینهسازی ازدحام ذرات بهبودیافته مبتنی بر یک کلاس نوین از استراتژیهای ضرائب یادگیری کارآمد و سریع
|
محمدجواد عموشاهی ، موسی شمسی* ، محمدحسین صداقی  |
دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند تبریز ، shamsi@sut.ac.ir |
|
چکیده: (12493 مشاهده) |
الگوریتم بهینهسازی ازدحام ذرات (PSOالگوریتم بهینهسازی ازدحام ذرات (PSO) یک روش بهینهسازی فراابتکاری مبتنی بر جمعیت است که میتواند برای طیف وسیعی از مسائل بهکار گرفته شود اما این الگوریتم ایراداتی هم دارد؛ مانند اینکه بهراحتی در نقاط بهینه محلی گیر میافتد و در مراحل پایانی دچار کندی همگرایی میگردد. بهمنظور حل این ایرادات، تاکنون انواع الگوریتمهای PSO بهبودیافته (IPSO) پیشنهاد شده است. جهت ایجاد یک تعادل بین ویژگیهای پویش و بهرهبرداری PSO، این مقاله الگوریتمهای IPSO مبتنی بر یک کلاس جدید از ضرائب یادگیری نمایی (ELF-PSO) را معرفی مینماید که از لحاظ محاسباتی کارآمد و سریع میباشند. این کلاس شامل استراتژیهای ضرائب یادگیری نمایی متغیر با زمان (TELF)، ضرائب یادگیری نمایی تصادفی (RELF)، ضرائب یادگیری نمایی خود-تنظیم (SELF) و ضرائب یادگیری نمایی خطی (LELF) است. آزمایشهای متعددی برای مقایسه روشهای پیشنهادی با یک مجموعه از استراتژیهای معروف ضرائب یادگیری ثابت، تصادفی، متغیر با زمان و تطبیقی بر روی یک سری از توابع معیار غیرخطی انجام پذیرفت. نتایج تجربی و تحلیلهای آماری ثابت میکنند که الگوریتمهای ELF-PSO قادرند دسته وسیعی از مسائل بهینهسازی غیرخطی دشوار را بهطور کارآمدی حل کنند. همچنین نتایج آزمایشها نشان میدهد که روشهای پیشنهادی، در اغلب موارد بهتر از سایر الگوریتمها عمل میکنند. |
|
واژههای کلیدی: الگوریتم بهینهسازی ازدحام ذرات بهبودیافته، ضرائب یادگیری تطبیقی، ضرائب یادگیری متغیر با زمان، توابع معیار غیرخطی |
|
متن کامل [PDF 1933 kb]
(4381 دریافت)
|
نوع مطالعه: پژوهشي |
موضوع مقاله:
محاسبات نرم دریافت: 1397/9/21 | پذیرش: 1398/1/13 | انتشار: 1398/11/2
|
|
|
|