[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Publication Statistics::
List of Reviewers::
Social Networks::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 5, Issue 2 (3-2019) ::
2019, 5(2): 4-22 Back to browse issues page
Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition
Hadi Delavari * , Seyede zahra Rashidnejad heydari
Hamedan University of Technology , hdelavary@gmail.com
Abstract:   (13483 Views)

In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depends on knowing the upper bound of uncertainty in the system, but in practical application it is difficult or in some cases impossible to calculate this upper limit. In this paper, an adaptive law is given for online calculating of this parameter. The stability proof of the sliding surface, as well as the proof of finite time convergence of closed-loop system, are investigated using the Lyapunov theory. Finally, the performance of the proposed controller is evaluated both in normal and partial shading conditions. For a better comparison of the proposed controller, the performance of this controller is compared in the presence of load variations and the variations of system parameters with the conventional (integer order) terminal sliding mode control.

Keywords: solar cell, fractional calculus, maximum power point tracking, incremental guidance method, fractional order terminal sliding mode controller, partial shading condition
Full-Text [PDF 1609 kb]   (2105 Downloads)    
Type of Study: Research | Subject: Nonlinear Control
Received: 2017/12/16 | Accepted: 2018/10/5 | Published: 2019/07/3
References
1. [1] Rezk, H., Eltamaly, A.M. (2015). “A comprehensive comparison of different MPPT techniques for photovoltaic systems”. Solar energy, Vol. 112, pp. 1-11.
2. [2] Nishioka, K., Sakitani, N., Kurobe, K.I., Yamamoto, Y., Ishikawa, Y., Uraoka, Y., Fuyuki, T. (2003). “Analysis of the temperature characteristics in polycrystalline Si solar cells using modified equivalent circuit model”. Japanese journal of applied physics Vol. 42, pp. 7175-7180.
3. [3] Ram, J.P., Babu, T.S. and Rajasekar, N. (2017). “A comprehensive review on solar PV maximum power point tracking techniques”. Renewable and Sustainable Energy Reviews, vol. 67, pp.826-847.
4. [4] Burst, J.M., Duenow, J.N., Albin, D.S., Colegrove, E., Reese, M.O., Aguiar, J.A., Jiang, C.S., Patel, M.K., Al-Jassim, M.M., Kuciauskas, D. and Swain, S. (2016). “CdTe solar cells with open-circuit voltage breaking the 1 V barrier”. Nature Energy, vol. 1, pp. 16015.
5. [5] Devi, V. K., Premkumar, K., Beevi, A. B., Ramaiyer, S. (2017).“A modified Perturb & Observe MPPT technique to tackle steady state and rapidly varying atmospheric conditions”. Solar Energy, Vol.157, pp.419-426.
6. [6] Lian, K.L., Jhang, J.H. and Tian, I.S. (2014). “A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization”. IEEE journal of photovoltaics, vol. 4, pp. 626-633.
7. [7] Loukriz, A., Haddadi, M. and Messalti, S. (2016). “Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems”. ISA transactions, vol. 62, pp.30-38.
8. [8] Verma, D., Nema, S., Shandilya, A.M. and Dash, S.K. (2016). “Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems”. Renewable and Sustainable Energy Reviews, vol. 54, pp.1018-1034.
9. [9] Houssamo, I., Locment, F., Sechilariu, M. (2010). “Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms”. Renewable Energy Vol. 35, pp. 2381-2387.
10. [10] Rezaei, A., Gholamian, S. A. (2013). “Optimization of New Fuzzy Logic Controller by Genetic Algorithm for Maximum Power Point Tracking in Photovoltaic System”. Journal of Science and Technology, Vol. 9, pp. 9-16.
11. [11] محمدزاده، الف.، منثوری، م.، تشنه لب، م.، علیاری، م. (1392). "طراحی کنترل‌ فازی تطبیقی مستقیم نوع دوم بر اساس مدل سوگنو با محدودیت های کمتر روی بهره‌ی کنترلی و با تنظیم پارامترهای بخش تالی و پارامترهای توابع تعلق". نشریه سامانه‌های غیرخطی در مهندسی برق، دانشگاه صنعتی سهند، تابستان.
12. [12] خانی، الف.، قائمی، س. بادامچی‌زاده، م. (1394)."طراحی و آنالیز پایداری سیستم‌های کنترل مبتنی بر مدل فازی T-S نوع 2 فاصله‌ای در حضور رویت‌گرهای فازی نوع 2 فاصله‌ای با رویکرد تابع لیاپانوف فازی و جبران‌سازی توزیع شده غیر موازی". نشریه سامانه‌های غیر خطی در مهندسی برق ، دانشگاه صنعتی سهند، تابستان.
13. [13] Dounis, A. I., Kofinas, P., Papadakis, G., Alafodimos, C. (2015). “A direct adaptive neural control for maximum power point tracking of photovoltaic system”. Solar Energy, Vol. 115, pp. 145-165.
14. [14] Rezk, H., Hasaneen, E. S. (2015). “A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems”. Ain Shams Engineering Journal, Vol. 6, pp. 873-881.
15. [15] Asma, Z., Karim, D. and Tarak, D. (2016). “Maximum power point tracking of photovoltaic systems based on fast terminal sliding mode controller”. International Journal of Renewable Energy Research (IJRER), vol. 6, pp.1435-1445.
16. [16] Rekioua, D., Achour, A. Y., Rekioua, T. (2013). “Tracking power photovoltaic system with sliding mode control strategy”. Energy Procedia, Vol. 36, pp. 219-230.
17. [17] Chiu, C. S., Ouyang, Y. L., Ku, C. Y. (2012). “Terminal sliding mode control for maximum power point tracking of photovoltaic power generation systems”. Solar Energy, Vol. 86, pp. 2986-2995.
18. [18] Delavari, H. (2017). “A novel fractional adaptive active sliding mode controller for synchronization of non-identical chaotic systems with disturbance and uncertainty”. International Journal of Dynamics and Control, Vol. 5, pp. 102-114.
19. [19] Mohadeszadeh, M., & Delavari, H. (2017). “Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control”. International Journal of Dynamics and Control, Vol. 5, pp. 124-134.
20. [20] Delavari, H., Senejohnny, D., & Baleanu, D. (2012). “Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter”. Open Physics, Vol. 10, pp. 1095-1101.
21. [21] دلاوری، ه.، حیدری‌نژاد، ح. (1396). " طراحی کنترل کننده پسگام مدلغزشی مرتبه کسری تطبیقی برای سیستم شناور مغناطیسی". مجله مهندسی مکانیک مدرس، دوره 17، شماره 3، خرداد، صفحه 187-195.
22. [22] حیدری‌نژاد، ح.، دلاوری، ه. (1395). " تنظیم گلوکز خون با استفاده از کنترل مدلغزشی مرتبه کسری تطبیقی در بیماران دیابتی نوع 1". مجله مهندسی پزشکی زیستی، دوره 9، شماره 4، زمستان، صفحه327-335.
23. [23] Mojallizadeh, M.R., Badamchizadeh, M., Khanmohammadi, S. and Sabahi, M. (2016). “Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells”. Solar Energy, vol. 132, pp.538-546.
24. [24] Dahech, K., Allouche, M., Damak, T. and Tadeo, F. (2017). “Backstepping sliding mode control for maximum power point tracking of a photovoltaic system”. Electric Power Systems Research, vol. 143, pp.182-188.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delavari H, rashidnejad heydari S Z. Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition. Nonlinear Systems in Electrical Engineering 2019; 5 (2) :4-22
URL: http://journals.sut.ac.ir/jnsee/article-1-174-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 5, Issue 2 (3-2019) Back to browse issues page
سامانه های غیرخطی در مهندسی برق Journal of Nonlinear Systems in Electrical Engineering
نشریه سامانه‌های غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیه‌های «کمیته بین‌المللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت می‌کند.
Persian site map - English site map - Created in 0.15 seconds with 37 queries by YEKTAWEB 4642